3.1026 \(\int \frac{(a+i a \tan (e+f x))^{5/2}}{(c-i c \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=155 \[ -\frac{2 i a^{5/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{c^{3/2} f}+\frac{2 i a^2 \sqrt{a+i a \tan (e+f x)}}{c f \sqrt{c-i c \tan (e+f x)}}-\frac{2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}} \]

[Out]

((-2*I)*a^(5/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(c^(3/2)*f)
 - (((2*I)/3)*a*(a + I*a*Tan[e + f*x])^(3/2))/(f*(c - I*c*Tan[e + f*x])^(3/2)) + ((2*I)*a^2*Sqrt[a + I*a*Tan[e
 + f*x]])/(c*f*Sqrt[c - I*c*Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.165859, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3523, 47, 63, 217, 203} \[ -\frac{2 i a^{5/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{c^{3/2} f}+\frac{2 i a^2 \sqrt{a+i a \tan (e+f x)}}{c f \sqrt{c-i c \tan (e+f x)}}-\frac{2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^(5/2)/(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

((-2*I)*a^(5/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(c^(3/2)*f)
 - (((2*I)/3)*a*(a + I*a*Tan[e + f*x])^(3/2))/(f*(c - I*c*Tan[e + f*x])^(3/2)) + ((2*I)*a^2*Sqrt[a + I*a*Tan[e
 + f*x]])/(c*f*Sqrt[c - I*c*Tan[e + f*x]])

Rule 3523

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (e+f x))^{5/2}}{(c-i c \tan (e+f x))^{3/2}} \, dx &=\frac{(a c) \operatorname{Subst}\left (\int \frac{(a+i a x)^{3/2}}{(c-i c x)^{5/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}-\frac{a^2 \operatorname{Subst}\left (\int \frac{\sqrt{a+i a x}}{(c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac{2 i a^2 \sqrt{a+i a \tan (e+f x)}}{c f \sqrt{c-i c \tan (e+f x)}}+\frac{a^3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x} \sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{c f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac{2 i a^2 \sqrt{a+i a \tan (e+f x)}}{c f \sqrt{c-i c \tan (e+f x)}}-\frac{\left (2 i a^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2 c-\frac{c x^2}{a}}} \, dx,x,\sqrt{a+i a \tan (e+f x)}\right )}{c f}\\ &=-\frac{2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac{2 i a^2 \sqrt{a+i a \tan (e+f x)}}{c f \sqrt{c-i c \tan (e+f x)}}-\frac{\left (2 i a^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{c x^2}{a}} \, dx,x,\frac{\sqrt{a+i a \tan (e+f x)}}{\sqrt{c-i c \tan (e+f x)}}\right )}{c f}\\ &=-\frac{2 i a^{5/2} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{c^{3/2} f}-\frac{2 i a (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac{2 i a^2 \sqrt{a+i a \tan (e+f x)}}{c f \sqrt{c-i c \tan (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 7.00684, size = 184, normalized size = 1.19 \[ \frac{2 a^2 \cos (e+f x) (\tan (e+f x)-i)^2 \sqrt{a+i a \tan (e+f x)} \left (\cos \left (\frac{1}{2} (e-2 f x)\right )-i \sin \left (\frac{1}{2} (e-2 f x)\right )\right ) \left (\sin \left (\frac{1}{2} (e+4 f x)\right )+i \cos \left (\frac{1}{2} (e+4 f x)\right )\right ) \left (2 i \sin (2 (e+f x))-\cos (2 (e+f x))+3 \cos (e+f x) \tan ^{-1}\left (e^{i (e+f x)}\right ) (\cos (2 (e+f x))-i \sin (2 (e+f x)))-1\right )}{3 c f \sqrt{c-i c \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^(5/2)/(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

(2*a^2*Cos[e + f*x]*(Cos[(e - 2*f*x)/2] - I*Sin[(e - 2*f*x)/2])*(-1 - Cos[2*(e + f*x)] + 3*ArcTan[E^(I*(e + f*
x))]*Cos[e + f*x]*(Cos[2*(e + f*x)] - I*Sin[2*(e + f*x)]) + (2*I)*Sin[2*(e + f*x)])*(I*Cos[(e + 4*f*x)/2] + Si
n[(e + 4*f*x)/2])*(-I + Tan[e + f*x])^2*Sqrt[a + I*a*Tan[e + f*x]])/(3*c*f*Sqrt[c - I*c*Tan[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.037, size = 348, normalized size = 2.3 \begin{align*}{\frac{{a}^{2}}{3\,f{c}^{2} \left ( \tan \left ( fx+e \right ) +i \right ) ^{3}}\sqrt{a \left ( 1+i\tan \left ( fx+e \right ) \right ) }\sqrt{-c \left ( -1+i\tan \left ( fx+e \right ) \right ) } \left ( 9\,i\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) \left ( \tan \left ( fx+e \right ) \right ) ^{2}ac+3\,\ln \left ({\frac{ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}}{\sqrt{ac}}} \right ) \left ( \tan \left ( fx+e \right ) \right ) ^{3}ac-3\,i\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) ac-12\,i\sqrt{ac}\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\tan \left ( fx+e \right ) -9\,\ln \left ({\frac{ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}}{\sqrt{ac}}} \right ) \tan \left ( fx+e \right ) ac-8\,\sqrt{ac}\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) } \left ( \tan \left ( fx+e \right ) \right ) ^{2}+4\,\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(3/2),x)

[Out]

1/3/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(-1+I*tan(f*x+e)))^(1/2)*a^2/c^2*(9*I*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+
e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*tan(f*x+e)^2*a*c+3*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c
)^(1/2))/(a*c)^(1/2))*tan(f*x+e)^3*a*c-3*I*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^
(1/2))*a*c-12*I*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)-9*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2)
)^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*tan(f*x+e)*a*c-8*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)^2+4*(a*
c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c*(1+tan(f*x+e)^2))^(1/2)/(tan(f*x+e)+I)^3/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.88882, size = 521, normalized size = 3.36 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

1/6*(-6*I*a^2*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), sin(1/2*arctan2(sin(2*f*x + 2*e),
cos(2*f*x + 2*e))) + 1) - 6*I*a^2*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), -sin(1/2*arcta
n2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) - 4*I*a^2*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) +
12*I*a^2*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 3*a^2*log(cos(1/2*arctan2(sin(2*f*x + 2*e), co
s(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*
e), cos(2*f*x + 2*e))) + 1) - 3*a^2*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arcta
n2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 - 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + 4*a^
2*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 12*a^2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
2*e))))*sqrt(a)/(c^(3/2)*f)

________________________________________________________________________________________

Fricas [B]  time = 1.51032, size = 922, normalized size = 5.95 \begin{align*} -\frac{3 \, c^{2} f \sqrt{\frac{a^{5}}{c^{3} f^{2}}} \log \left (\frac{2 \,{\left (4 \,{\left (a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2}\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} +{\left (2 i \, c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - 2 i \, c^{2} f\right )} \sqrt{\frac{a^{5}}{c^{3} f^{2}}}\right )}}{a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2}}\right ) - 3 \, c^{2} f \sqrt{\frac{a^{5}}{c^{3} f^{2}}} \log \left (\frac{2 \,{\left (4 \,{\left (a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2}\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} +{\left (-2 i \, c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + 2 i \, c^{2} f\right )} \sqrt{\frac{a^{5}}{c^{3} f^{2}}}\right )}}{a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2}}\right ) -{\left (-4 i \, a^{2} e^{\left (4 i \, f x + 4 i \, e\right )} + 8 i \, a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + 12 i \, a^{2}\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )}}{6 \, c^{2} f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/6*(3*c^2*f*sqrt(a^5/(c^3*f^2))*log(2*(4*(a^2*e^(2*I*f*x + 2*I*e) + a^2)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*s
qrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) + (2*I*c^2*f*e^(2*I*f*x + 2*I*e) - 2*I*c^2*f)*sqrt(a^5/(c^3*f
^2)))/(a^2*e^(2*I*f*x + 2*I*e) + a^2)) - 3*c^2*f*sqrt(a^5/(c^3*f^2))*log(2*(4*(a^2*e^(2*I*f*x + 2*I*e) + a^2)*
sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) + (-2*I*c^2*f*e^(2*I*f*x +
 2*I*e) + 2*I*c^2*f)*sqrt(a^5/(c^3*f^2)))/(a^2*e^(2*I*f*x + 2*I*e) + a^2)) - (-4*I*a^2*e^(4*I*f*x + 4*I*e) + 8
*I*a^2*e^(2*I*f*x + 2*I*e) + 12*I*a^2)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(
I*f*x + I*e))/(c^2*f)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(5/2)/(c-I*c*tan(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac{5}{2}}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(f*x + e) + a)^(5/2)/(-I*c*tan(f*x + e) + c)^(3/2), x)